
www.manaraa.com

23-24 September, 2006, BULGARIA

1

MERGING ONTOLOGIES AND OBJECT-ORIENTED
TECHNOLOGIES FOR SOFTWARE DEVELOPMENT

Dencho N. Batanov
Frederick Institute of Technology

Computer Science Department
Nicosia, Cyprus

E-mail: com.bd@fit.ac.cy

Abstract: There is now almost unanimous agreement that the object-oriented paradigm, applied to
software engineering, is superior to the classical (function-based, procedural) paradigm. On the other
hand, the object-oriented software engineering methodologies have been evolved significantly over the
last two decades. The advent of Web in general and Semantic Web in particular led, for example, to
merging them with the ontologies and appearance of related models and tools. Using ontologies however
in the classical object-oriented software development life cycle is still not very well supported by
respective research, procedures, techniques and tools. The main idea of this paper is to pay attention to
the opportunities for using ontologies in the phase of high-level analysis of object-oriented systems in
general and, more specifically, to show how ontologies can be used for converting a problem domain text
description into an object model. The object model of a system consists of objects, identified from the text
description and structural linkages corresponding to existing or established relationships. The ontologies
provide metadata schemas, offering a controlled vocabulary of concepts. At the center of both object
models and ontologies are objects within a given problem domain. The difference is that while the object
model should contain explicitly shown structural dependencies between objects in a system, including
their properties, relationships, events and processes, the ontologies are based on related terms only. On
the other hand, the object model refers to the collections of concepts used to describe the generic
characteristics of objects in object-oriented languages. Because ontology is accepted as a formal, explicit
specification of a shared conceptualization, we can naturally link ontologies with object models, which
represent a system-oriented map of related objects, described as Abstract Data Types (ADTs).

Keywords: Software Engineering, Ontology, Object-Oriented Analysis, Object identification

www.manaraa.com

2 PROCEEDINGS of the 20th International Conference SAER-2006

 1. INTRODUCTION

 Ontology is a specification of a representational vocabulary for a shared
domain of discourse: definitions of classes, relations, functions, and other objects
(Gruber, 1993) or, more generally, a specification of conceptualization (Gruber,
1994). To solve the problem of heterogeneity in developing software applications,
there is a need for specific descriptions of all kinds of concepts, for example, classes
(general things), the relationships that can exist among them, and their properties (or
attributes) (Heflin, Volz, and Dale, 2002). Ontologies described syntactically on the
basis of languages such as eXtensible Markup Language (XML), XML Schema
(XMLS), Resource Description Framework (RDF), RDF Schema (RDFS) and OWL
(Web Ontology Language) can be successfully used for this purpose.
Object orientation is a commonly accepted paradigm in software engineering for the
last few decades. There is now almost unanimous agreement that it is superior to the
classical (function-based, procedural) paradigm. On the other hand, the object-
oriented software engineering methodologies have been evolved significantly over the
last two decades. The advent of Web in general and Semantic Web in particular led,
for example, to merging them with the ontologies and appearance of related models
and tools. The foundation of such merging is the domain model. The Semantic Web
community has produced in the last couple of years a number of complementary tools,
including languages (RDF Schema and OWL), for developing, maintaining, using and
sharing domain models for (Object-Oriented) Software Engineering. For example,
domain models encoded in OWL can be uploaded on the Web and shared among
multiple applications. It’s worth noting here that there are quite substantial differences
between the object models used by object-oriented and Semantic Web-oriented
programming languages. Merging ontologies however and the classical object-
oriented software development, where the classical object model is used, is still not
very well supported by respective research, related procedures, techniques and tools.
 The motto of classical object-oriented software development may be
formulated in different ways, but its essence can be stated simply: “Identify and
concentrate on objects in the problem domain description first. Think about the
system function later.” At the initial analysis phase, however, identifying the right
objects, which are vital to the system’s functionality, seems to be the most difficult
task in the whole development process, from both theoretical and practical point of
view. Object-oriented software development is well supported by a huge number of
working methods, techniques, and tools, except for this starting point - object
identification and building the related system object model. Converting the text
description of system problem domain and respective functional requirement
specifications into an object model is usually left to the intuition and experience of
developers (system analysts). One commonly accepted rule of thumb is, “If an object
fits within the context of the system’s responsibilities, then include it in the system.”
However, since the members of a development team are likely to have different views
on many points, serious communication problems may occur during the later phases
of the software development process. Recently there has been great research interest
in applying ontologies for solving this "language ambiguity problem" as either an
ontology-driven or ontology-based approach (Deridder, Wouters, 1999).
 Object-oriented software is actually a process of software implementation of
Abstract Data Types (ADTs). Any ADT is a named set of attributes, which show the
characteristics of and formalize the relationships between objects, and methods
(operations, functions) for putting into effect the behavior of objects, making the

www.manaraa.com

September 22nd, 2006, BULGARIA

3

system functional enough to be of practical use. Building an accurate, correct and
objectively well-defined object model containing objects, represented as ADTs, is the
basis for successful development of an object-oriented software system (Weiss, 1993;
Manola, 1999). Objects are transformed during the software development process
from “real things” to concepts, and finally to ADTs, as shown
in Figure1.

Real Thing Concept Abstract Data Type

STUDENT
- Person who is
studying in an
academic system

STUDENT
- Attributes with their types
- Behavior (methods,
operations, functions)

Figure 1. Conceptualization and ADTs

 In this paper, I’ll show a possible procedure for converting a text description
of a problem domain into an object model, based on transformation of eight different
models. Only two of them, namely the Text description model (T-model) and Class
(object) model (C-model), are included in the classical object-oriented software
development process. The rest of the models represent specific analysis work, which
the developers should do in order to get benefit from using ontologies for semi-formal
identification of objects, which are to be responsible for the system functionality. The
paper is structured as follows: Section 2 introduces the models in general and
describes the overall procedure for their transformation. Section 3 is dedicated to a
little bit more detailed description of the models as well as to discussion on the
techniques and tools, which can be practically used for model transformation. An
illustrative example of a part of the information system for the domain of academic
management is used throughout the paper to support the explanations. Finally, section
4 summarizes the proposed procedure and highlights direction for future work.

 2. OVERVIEW OF THE PROCEDURE

 Models are inseparable and one of the most significant parts of any
methodology. They help developers to better understand complex tasks and represent
in a simpler way the work they should do to solve those tasks. Object-oriented
analysis of a system under development is a good example of such a complex task.
The complexity stems from the fact that in object-oriented development everything is
based on objects but their identification in a given problem domain is completely left
to the intuition of the developer. All that he/she has as a starting point is the text
description of the problem domain, which is itself an extended model of the usually
very general and ambiguous initial user requirements. Following the existing practice
we accept this text description model (T-model) as the available model, which serves
as a starting point of our transformation process. According to the object-oriented
software development methodology the analysis work on the T-model leads to two
major deliverables: functional specification of the system, expressed as either text or
graphically as Use Case diagrams and the class (object) model (C-model).
 The ultimate goal of the developer's efforts is actually creating the C-model.
This is so because the objects included in the C-model should contain the complete
information necessary for the next phases of design and implementation of the

www.manaraa.com

4 PROCEEDINGS of the 20th International Conference SAER-2006

software system. In other words the objects should be represented as ADTs - ready for
design and implementation software modules. It is clear now the already mentioned
problem with "language ambiguity" - different interpretations of the T-model, without
any formal support of the choice of participating objects, would lead to creating C-
models, which are quite probably inconsistent, incomplete or inefficient for the
further steps of design and implementation. We can believe that using ontology as a
tool of conceptualization working on the T-model can make if not fully formal at least
semi-formal the process of creating the C-model and in this way to help developers in
this complex and imprecise task. Figure 2 shows the basic idea of the procedure,
models used and transformation process on them. The starting point of the
transformation is the T-model, which represents a concise description of the problem
domain, where the software system under development will work, written in a natural
language, in this case English. If not available the T-model is a deliverable from a
system analyst's work on the general user requirements for the system functionality.
The presumption is that this problem domain description contains the main objects,
which will participate in ensuring that functionality. Of course, at this level the
objects are represented by their natural names only and as such are very far from the
form we need to reach - represented as ADTs. To help this process we refer to a tool
of conceptualization - an ontological engine, which applied on the T-model generates
an ontological model (O-model) of the problem domain at hand.

T-model
........
........
... The
doctoral
student
must
normally
have
........

Text
description
model

O-model
<rdfs:subCl
assOf
rdf:resource
="http://we
b.mit.edu#
Top" />

<rdfs:sub
ClassOf
rdf:resou
rce="

Ontological
model

MF-model

stu co app the app sup fac staf me dep exa req res deg per ter dea righ pro ow the the doc doc app fac staf sen full
O1 O2 O3 O4 O5 O6 O7 O8 O9O10O11O12O13O14O15O16O17O18O19O20O21O22O23O24O25O26O27O28O29

stude O1
commO2
approO3
thesis O4
applicO5
super O6
facult O7
staff O8
mem O9
deparO10
examO11
requirO12
reseaO13
degreO14
permO15
termO16
deanO17
right O18
propoO19
own O20
thesiO21
thesiO22
doct O23
doct O24
appr O25
faculO26
staff O27
seni O28
full O29
full_tO30
final O31
geneO32
exa O33
intellO34
oral_O35
doct O36
stud O37
depaO38

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10O11O12O13O14O15O16O17O18O19O20O21O22O23O24O25O26O27O28O29

Full
Matrix
model

Mr-
model

appr
oval

thes
is

appl
icati

sup
ervi

dep
artm

exa
min

degr
ee

per
mis

dea
n

right thes
is p

thes
is r

doct
oral

s taff
me

full_
time

fina
te

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12 o13 o14 o15 o1

approval o1

thesis o2

application o3

supervis or o4

department o5

examination o6

degree o7

permiss ion o8

dean o9

right o10

thesis _proposal o11

thesis _research o12

doctoral_student o13

staff_member o14

full_time_res ident o15

final_term o16

examination_requirement o17

intellec tual_property o18

department_committee o19

5 8 2 3 3 1 4 2 4 3 4 1 10 3 4weight

Reduced
matrix
model

C-model

Class
(object)
 model

XML-
model

<>…….<
>
 <…….

……
>

DF-model

Data and
Function
model

data

function

UO-model

Use Case
Ontological
model

4

5 6 7 8

3

2

1

 Figure 2. Models for converting a text description into an object model

We use the fact that any ontology is a systematic description of concepts (objects) in a
given domain of interest along with expressed relationships between all or part of
them. The O-model is a straightforward and practically useful source of information
for identifying the participating objects. We use this information to build a so-called

www.manaraa.com

September 22nd, 2006, BULGARIA

5

Full Matrix model (MF-model), which represents in a simple form those objects as
well as the linkages (relationships) between them. However, it is worth noting that the
processing of the MF-model is semi-formal in nature. This means that at this phase
the developer should take important decisions about which objects could be
considered as basic ADTs and which, and where, could play a role of attributes of
other ADTs. The idea is simple but not very easy for implementation - to reduce the
full object matrix to a matrix (we call this model Mr-model), which contains only the
basic objects represented later as ADTs containing other ADTs as attributes. The
implementation is not very easy because we need more information here, which
relates to expected functionality of participating objects. This information, however,
is available or can be extracted from the Use Case model of the system under
development. Note that at this phase we can also use the already generated problem
domain ontology. Along with showing the concepts hierarchy (possible objects in the
system) the ontologies also analyze the verbs linking those concepts, which can be
considered as functions (operations) belonging to respective objects.
 We actually use the text descriptions of different Use Cases to extract
different functionality of the system by the ontological engine and as a result we get
the so-called Use Case Ontological model (UO-model). The functionality, expressed
by the UO-model, can be used successfully at this particular phase along with the
ontological information about the objects in the MF-model to create the Data and
Function model (DF-model). As a matter of principle DF-model can be used for each
of the objects in the DF-model but this would lead to a high degree of redundancy and
quite complicated matrix presentation even for relatively simple T-models. To avoid
this we propose using so called business object patterns. It is important to note that
these patterns are not software patterns; they are ontology-based description patterns.
The idea is to use ontological libraries existing recently for a great number of
application domains and to rely on the ontological description of the concepts
(objects), which according to the developer's decision have the highest degree of
likelihood of being selected as basic objects in the system. This would allow for
significant reduction of the number of possible objects in the DF-model, or we can
transform it to the Mr-model.
 We assume that Mr-model contains all the necessary information for
building the C-model, which is actually the goal of this first phase of analysis. The
representation of the C-model is significantly different from Mr-model however, as
far as the former shows not only the object hierarchy but the objects' structure as well.
In other words, the C-model is a model representing ADTs. The last model, the XML-
model is optional but can be very important in practice because it allows the C-model
to be published on the Web in a unified (XML-based) format supporting the
collaborative work, which is a commonly accepted technology nowadays.
 Finally, an interesting question may arise here. Do the additional models
used in the transformation procedure replace or ignore the well-known and widely
used models applied to the analysis of object-oriented systems? The answer is
certainly not. All models, such as the information model, state model, process model,
functional model, etc., along with their accompanying methods, techniques and tools
(for example those included in Rational Rose CASE tools) remain absolutely
necessary for completing the phase of object-oriented analysis. What is shown here is
a semi-formal procedure for converting a text description of a given problem domain
into an object model, which should be considered as a basis for further analysis work.

www.manaraa.com

6 PROCEEDINGS of the 20th International Conference SAER-2006

 3. THE MODELS USED

 In this section I will briefly show the foundation, role and structure of the
models used in the transformation process along with the tools, mainly the ontological
ones, which can be used for implementing the models. One and the same example - a
part of a university information system regarding PhD students - is used as an
illustration where needed. More detailed description can be found in (Waralak and
Batanov, 2006).

 3.1 T-Model: Text Description Model

 The exemplary T-model or text description of a problem domain model is
shown on the left side of Figure 3. This text description is a subject of transformation
in the next phase of the procedure – generating the ontological model.

- <rdf:Description
rdf:about="http://stweb.ait.ac.th#doctoral_student">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-
schema#Resource" />
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-
schema#Class" />
 <rdf:type
rdf:resource="http://ontoserver.cognit.no/otk_rdf#Concept" />
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-
schema#Resource" />
 <rdfs:subClassOf rdf:resource="http://stweb.ait.ac.th#Top" />
 <rdfs:subClassOf rdf:resource="http://stweb.ait.ac.th#MISC" />
 <rdfs:subClassOf
rdf:resource="http://stweb.ait.ac.th#doctoral_student" />
 <oe:relatedTo rdf:resource="http://stweb.ait.ac.th#thesis" />
 <oe:relatedTo rdf:resource="http://stweb.ait.ac.th#degree" />
 <oe:relatedTo rdf:resource="http://stweb.ait.ac.th#right" />
 <oe:relatedTo rdf:resource="http://stweb.ait.ac.th#application" />
 <oe:relatedTo rdf:resource="http://stweb.ait.ac.th#dean" />
……….

“The doctoral student
must normally have
completed the general
examination
requirement for the
degree. The doctoral
student devoted full
time to the thesis
research. When
doctoral students held
the rights to
intellectual property

Figure 3. Text description model

 3.2 O-Model: Ontological model

 CORPORUM OntoExtract (Engles, 2001) and more specifically its Web-
based (on-line) version is a tool for extracting ontologies and representing them in
XML/RDF/OIL (default is RDF schema - RDFS) format. The result of processing is
shown in the right hand box of Figure 3. RDFS provides a mechanism to define
domain-specific properties and classes of resources to which developers may apply
those properties (Klein, 2001). CORPORUM OntoExtract basically generates
taxonomies that represent classes, subclasses, and instances. Taking a single text or
document as input, CORPORUM-OntoExtract retrieves document specific
lightweight ontology from it. An important category that is exported by the
OntoExtract engine is the cross-taxonomic relations expressed by <relatedTo>,
<stronglyRelatedTo>, <veryStronglyRelatedTo> and so on tags and identifying the
existig relations between objects. For example, in the box on the right side of Figure

www.manaraa.com

September 22nd, 2006, BULGARIA

7

3, the class “doctoral_student” has certain relations with other classes such as
“thesis”, “degree”, “application”, etc.

 3.3 MF-Model: Full Matrix model

 MF-model is represented as a two-dimensional array of elements (or entries)
set out by rows and columns showing the relationships between objects in the system
through simple mapping as shown in Figure 4. Based on the above general
considerations, we can build a full matrix as depicted in Figure 5 to show every
relationship that occurs between already identified objects.

 O1 O2 .. Ok

O1 X X X

O2 X X X

.. X

On X X

Object set
O1

O2
.
.Ok

Object set
 O1

 O2
 .
 On

Figure 4. Relationships between objects

stu co app the app sup fac staf me dep exa req res deg per ter dea righ pro ow the the doc doc app fac staf sen full full fina gen exa inte oral doc stud dep
O1 O2 O3 O4 O5 O6 O7 O8 O9O10O11 O12O13O14O15O16 O17O18O19O20O21 O22O23O24O25O26 O27O28O29O30O31O32O33O34 O35O36 O37O38 weight

stude O1
com

O1 2
mO2

a
O2 1

ppro O3 O3 5
thes is O4 O4 10
applic O5 O5 2
super O6 O6 1
facult O7 O7 1
staff O8 O8 1
mem O9 O9 2
deparO10 O10 3
examO11 O11 2
requirO12 O12 1
reseaO13 O13 1
degreO14 O14 4
permO15 O15 2
term O16 O16 1
deanO17 O17 4
right O18 O18 3
propoO19 O19 1
own O20 O20 3
thes iO21 O21 6
thes iO22 O22 2
doct O23 O23 14
doct O24 O24 2
appr O25 O25 2
faculO26 O26 3
staff O27 O27 3
seni O28 O28 3
full O29 O29 2
full_tO30 O30 4
final O31 O31 4
geneO32 O32 4
exa O33 O33 3
intell O34 O34 3
oral_O35 O35 3
doct O36 O36 2
stud O37 O37 2
depaO38 O38 3

O7 O8 O9 O1O1 O2 O3 O4 O5 O6 0O11O12O13 O14O15O16O17O18 O19O20O21O22O23 O24O25O26 O27O28O29O30O31 O32O33O34O35O36 O37 O38

Figure 5. Full Matrix model
 The total number of relationships an object has with other objects is called
the weight of that particular object. It determines how many relationships one object
has to other objects participating in this particular problem domain. One may infer
that higher the weight the higher the relevance of that object in the domain or, in other
words, the higher is the likelihood that this particular object can be considered as a
separate ADT in the software system. Following heuristics from previous experience
we can define here some quantitative characteristics of the weight as a parameter, for
example its minimum, from which an object may be considered as a separate one.

http://www.hyperdictionary.com/dictionary/a
http://www.hyperdictionary.com/dictionary/array
http://www.hyperdictionary.com/dictionary/of
http://www.hyperdictionary.com/dictionary/elements
http://www.hyperdictionary.com/dictionary/or
http://www.hyperdictionary.com/dictionary/entries
http://www.hyperdictionary.com/dictionary/set
http://www.hyperdictionary.com/dictionary/out
http://www.hyperdictionary.com/dictionary/by
http://www.hyperdictionary.com/dictionary/rows
http://www.hyperdictionary.com/dictionary/and
http://www.hyperdictionary.com/dictionary/columns

www.manaraa.com

8 PROCEEDINGS of the 20th International Conference SAER-2006

This can significantly help the developer to identify the basic objects in the system,
although his/her decision-making is still necessary. This is actually the semi-formal
nature of the procedure.

 3.4 UO-model: Use Case Ontological model

 Additional information is necessary related to system functionality, in which
different objects are involved. Such information is of vital importance for identifying
the complete contents of objects as data and behavior (objects' functions, operations),
which are fundamental elements of the object model (Batanov and Arch-int, 2003).
Moreover, considering system functionality at this early stage of analysis may help
the system analyst to define more precisely the basic objects in the system, to add new
objects or to remove/replace already identified objects, which are not important for
any of the system functions.
 Use Case Modeling is the process of identifying and modeling business
events, who/what initiates them and how the system responds to them. Any Use Case
can be represented either graphically (as a Use Case diagram) or as a text description
in two forms: concise Use Case description and more detailed functionality
description (see Figure 6 for clarifying the difference between Use Case diagram, Use
Case text description and functionality text description). We use the functionality text
description in order to apply the same ontology-based procedure for creating the O-
model. In this case another ontological engine, VisualText
(www.textanalysis.com/Products/Overview/overview.html) is used as a tool for
information extraction, natural language processing and text analysis. The goal of
UO-model is to analyze the functionality escription and as a result to add
functions/operations to respective objects. As illustrated in Figure 6, several use cases
may be used to describe a single well-defined functionality of the system.
 It becomes easier now for the developer to decide which object should be
considered as a separate ADT and which as an element of another ADT. For example,
if a new object appears as a result of the ontological analysis of a functionality
description but is not identified as a separate object from the O-model, it must be
considered as an additional separate object now.

http://www.textanalysis.com/Products/Overview/overview.html

www.manaraa.com

September 22nd, 2006, BULGARIA

9

Use case1: Checking
validity of thesis proposal Given the

requirement
for the
degree, the
system
should
check
periodically
the
fulfillment
the doctoral
student for
the doctoral
thesis. The
report
should be
generated.
The report
shows the
current
status of
each thesis.
Satisfying
all
requirement
s the system
should
notify the
supervisor

Use case1: Check
validity of
thesis proposal

Use case2: Check
fulfillment of
requirements
for doctoral
students

Use case3: Get
the doctoral
student’s
information

Use case4: Show
the faculty
member
assignment
related to
doctoral
students
information

Use case5:
generating list
of doctoral
students ready
for final
defense.

Figure 6. Use case diagram, Use Case description, and functionality text description

Figure 7 illustrates how the two tools OntoExtract and VisualText can help
determining which functions are relevant to the working objects in the problem
domain description. The figure also shows that it is possible new relationships to
appear between the objects generated by the two tools, which means that they should
be formalized in respective new attributes.

Figure 7. Output from the ontological analysis of a functionality text description

Use case5: Generating
list of PhD students
ready for final defense.

Use case4: Faculty
member assignment
related to PhD student
information

Use case3: PhD student
information

Syste
m

Use case2: Checking
fulfillment of requirement
for PhD students

<rdf:Description rdf:about="http://stweb.ait.ac.th#report">
…
 <rdfs:subClassOf rdf:resource="http://stweb.ait.ac.th#report" />
 <oe:veryWeaklyRelatedTo rdf:resource="http://stweb.ait.ac.th#th
 <oe:veryWeaklyRelatedTo rdf:resource="http://stweb.ait.ac.th#cu
 <rdfs:label xml:lang="en">report</rdfs:label>
 </rdf:Description> OntoExtract

Given the
requirement for the
degree, ...
... should be
generated. The report
shows the current
status of each thesis.
Satisfying all
requirements the
system should notify
the supervisor

 actor: the system (object3)
act: notify
obj: the supervisor
(object10) VisualText

www.manaraa.com

10 PROCEEDINGS of the 20th International Conference SAER-
2006

 3.5 DF-model: Data and Function model

 Data (attributes) and functions (methods, operations) are the two
fundamental parts of any object, represented as ADT. Each of the models introduced
already has its own contribution to creating one or another element of those two parts.
However, because of the requirement for decision making this process can still be
characterized as subjective or even intuitive. The idea to avoid this situation is very
simple - if something is defined already and checked successfully in practice, perhaps
with some adjustments, it can be used for another developer’s needs. This idea is
implemented and used broadly in object-oriented software engineering through
business objects and related patterns, shown in more detail for example in (Batanov
and Arch-int, 2003). An extension of this idea introducing the notion of Ontological
Business Object Pattern (OBOP) is used here. An OBOP is an ontology-based
description of a business object that presumably can be included as a working object
in the object-oriented software system. We actually rely on the fact that there are a
great number of ontological descriptions of concepts (objects) in different problem
domains, existing already (Guarino, 1998) and available from ontology library
systems such as WebOnto, Ontolingua, DARPA Agent Markup Language (DAML),
SHOE (Simple HTML Ontology Extensions), etc.
 In this case, the DAML ontology library and SHOEntity library are used,
more specifically their catalogs of ontologies, available in XML, HTML and DAML
formats. The developer should simply select the suitable ontology for the respective
problem domain. Figure 8 shows an example of how available ontological description
for our particular problem domain can be considered as OBOP.

Class Hierarchy

<Class ID="Student">
 <label>student</label>
 <subClassOf resource"=#Person/ ">
</Class>
<Property ID="takesCourse">
 <label>is taking</label>
 <domain resource="#Student" />
 <range resource="#Course" />
</Property>
<Property ID="doctoralDegreeFrom">
 <label>has a doctoral degree from</label>
 <domain resource"=#Person/ ">
 <range resource"=#University/ ">
</Property>

Figure 8. Ontological class hierarchy used as a pattern

 The ontological description shown in the right hand box of Figure 8 is found
in the ontology library and has a structure, which can be used by the developer
directly as not only class hierarchy but as a structured content of respective classes.
Within this pattern the concept (object) “student” possesses exactly the properties
(attributes) necessary for the system under development. We can say the same for the
root concept (object, class) “person”. Moreover, in the ontology the attributes
themselves are treated as concepts (objects) just like in object orientation, which
means that we can use the description of all objects, which we are interested in within
the class hierarchy. More specifically, the relationships are formalized through the
arguments (attributes), which are either types (Atomic ADTs) or categories (objects,

www.manaraa.com

September 22nd, 2006, BULGARIA

11

classes). Figure 9 shows that if a relationship exists between two concepts (objects),
they are both objects in our problem domain (for example, “takesCourse” has a
relationship with argument1 “Student” and argument2 “Course”, which should be
considered as working objects). The phenomenon “age” is related to argument1
“Person” and argument2 ”NUMBER” (type or Atomic ADT), which is different from
the first relation ("takesCourse"), so in this case, we should consider the “age” only as
an attribute of “Person”. It is clear, however, that this attribute “age” will be valid also
for objects “Student” and “GraduateStudent” because of the
generalization/specialization relationship.

 Relation Argument 1 Argument 2
 ==
 takesCourse Student Course
age Person NUMBER
emailAddress Person STRING
head Organization Person
undergradDegreeFrom Person University
mastersDegreeFrom Person University
doctoralDegreeFrom Person University
advisor Student Professor

Figure 9. Relations between objects

 3.6 Mr-model: Reduced matrix model

 In order to emphasize the necessity of this model we will review what
information the developer has up to this point working with the models described
above:

(1) Set of objects in the problem domain PD = {O1, O2, O3,.., Oa} with their
names and relationships, extracted from the T-model by an ontological
engine (in our case CORPORUM OntoExtract). The result is represented
in the MF-model.

(2) Set of objects FOE = {O1, O2, O3,.., Ob} with their names and
relationships as a result of applying an ontological engine (in our case
OntoExtract) on a Use Case-based system functionality. The result is
represented in a part of the UO-model.

(3) Set of objects FVT = {O1, O2, O3,.., Oc} with their names, relationships
and functions as a result of applying an ontological engine (in our case
VisualText) on a Use Case-based system functionality. The result is
represented in the other part of the UO-model.

(4) Set of objects BOP = {O1, O2, O3,.., Od}with their names, relationships
(including hierarchical information) and functions as a result of
searching for OBOPs in ontology libraries (in our case DAML and
SHOEntity). The result is represented in the DF-model.

Figure 10 shows in graphical form the existing situation. As we can see all objects are
within the system problem domain but on one hand their number is still large (this is
true even for relatively simple systems) and they are defined from different
perspectives (different models are used).

www.manaraa.com

12 PROCEEDINGS of the 20th International Conference SAER-
2006

FVT FOE

BOP

X

PD

 Figure 10. Different sets of objects

 Our presumption, based on a number of experiments, is that the basic
objects, which will play a substantial role in ensuring the system functionality, will
appear in all of the above models regardless of the perspective. This practically means
that we can apply a simple integration procedure - intersection of the above sets - to
identify those objects In Figure10 the resulting area is X, or
 X = PD ∩ FOE ∩ FVT ∩ BOP
Applying the above procedure the developer has the opportunity to reduce the number
of objects, which he/she is interested in, or to transform the MF-model to reduced
matrix model (Mr-model). Along with this, the developer can use another
quantitative technique for reducing the number of objects using the already mentioned
parameter weight, assigned to each object during the process of creating the MF-
model. This technique is based on a simple assumption, which is well supported by
our experiments – an object with higher weight would play a significant role in the
system and, therefore, can be identified as a separate object (ADT). At this stage of
research, to determine the degree of weight as low or high we refer to our
experiments, which qualitatively show that the low border is somewhere about 4 or 5
and a value above 10 should be definitely considered as high weight. For objects with
low weight, there are two options, either to consider them as complementary objects,
which to be included as attributes or references in other objects, or to rename and
consider them as separate objects. The developer should take the final decision. The
resulting Mr-model will look like the matrix shown in Figure 11.

www.manaraa.com

September 22nd, 2006, BULGARIA

13

appro
val

thesis
applic
ation

super
visor

depart
ment

exami
nation

degre
e

permi
ssion

dean right
thesis
_prop
osal

thesis
_rese
arch

stude
nt

staff_
memb
er

full_ti
me_r
eside
nt

final_t
erm

exami
nation
_requi
reme

intelle
ctual_
prope
rty

depart
ment_
comm
ittee

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12 o13 o14 o15 o16 o17 o18 o19

approvo1 5

thesis o2 8

applicao3 2

supervo4 3

depart o5 3

examino6 1

degreeo7 4

permis o8 2

dean o9 4

right o10 3

thesis_o11 4

thesis_o12 1

studeno13 10

staff_mo14 3

full_timo15 4

final_teo16 4

examino17 5

intelleco18 3

depart o19 4

5 8 2 3 3 1 4 2 4 3 4 1 10 3 4 4 5 3 4

weigh
t

weight

Figure 11. Reduced matrix model

 3.7. C-model: Class (object) model

 The C-model is the goal of preliminary analysis of object-oriented systems.
This is the well-known class hierarchy representation, including some initial but
significant relationships for the system functionality contents of objects – data and
behavior (functions, operations). We stress on the word initial here to emphasize the
fact that the analysis is far from over yet. The developer should continue applying the
conventional analysis models, methods and techniques on the C-model, which can
lead to substantial changes, including adding new objects, deleting some objects,
adding or removing some elements of the included objects, etc. The C-model can be
represented graphically using different tools such as Rational Rose (class diagrams),
textually using either some natural language or pseudo programming language, and
finally using some highly structured tag-based language.

 3.8. XML-model: XML object model

 This model is optional but extremely useful for exchanging analysis and
design information through the Web for supporting collaborative work. It represents
the C-model using the third option mentioned above and, more specifically XML as a
language-specification for computer-readable documents or a metalanguage, which
can be used as a mechanism for representing other languages in a standardized way
(Klein, 2001). In our case we use W3C XML Schema, which allows highest
flexibility in describing all necessary elements of any object hierarchy on one hand
and the details of object model on the other. Figure 12 illustrates a part of the XML-
based description of the object “student” or “DoctoralStudent” as an ADT.

www.manaraa.com

14 PROCEEDINGS of the 20th International Conference SAER-
2006

 <elementtype name="student">
 <empty/>
 <attdef name="student name" datatype="string"/>
 <attdef name="degree">
 <enumeration datatype="NMTOKEN">
 <option>Bachelor</option>
 <option>Master</option>
 <option>Doctoral</option>
 </enumeration>
 <funcdef name="getter">
 <funcdef name="setter">
 <required/>
 </funcdef>
 </attdef>

 </elementtype>
Figure 12. Example of XML object model

 4. CONCLUSION
 Merging ontologies and existing methods, techniques, and tools used during
the analysis phase of complex object-oriented software systems can contribute
significantly to reaching better decisions, with a positive effect on all the subsequent
phases of the development process. The models shown and the process of their
transformation can help developers of complex object-oriented software systems to:
(a) transform user requirements (represented as text description) into an object model
of the system under development based on the use of ontologies; (b) improve the
existing methods and techniques for creating a specific ontology from a text
description of the system problem domain, which would serve as a source for
identifying the objects and their respective ADTs; (c) work out implementation
techniques and tools for semi-automated or automated generating and editing of
ADTs for object-oriented application software development, and (d) improve the
effectiveness and efficiency of the existing methodology for high-level system
analysis in object-oriented software engineering.
 More research and development work can be done related to the formalization of the
methods and techniques in order to make them a part of CASE. Identification of
objects and related ADTs is based on ontology analysis but if for a given problem
domain such ontology still does not exist the developers should be ready to create it
themselves including a description of well-selected ontological business object
patterns.

REFERENCES
 1. Ahmed K, Ayers D, Birbeck M et al (2001) Professional XML Meta Data.
Wrox Press Ltd., Birmingham, UK.
 2.Batanov D.N. and Arch-int S (2003) Towards construction of business
components: an approach to development of web-based application systems, In:
Peckham J and Lloyd SJ (eds) Practicing
Software Engineering in the 21st Century. IRM Press, pp 178-194.
 3. Bennett S, McRobb S and Farmer R (1999) Object-Oriented System Analysis
and Design Using UML. McGraw-Hill, International Editions 2000, London.
 4.Booch G (1993) Object-Oriented Analysis and Design with Application, 2nd ed.
Benjamin-Cummings Co., Redwood City, CA.

www.manaraa.com

September 22nd, 2006, BULGARIA

15

 5.Chandrasekaran B, Josephson JR and Benjamin VR (1999) What are ontologies,
and why do we need them? IEEE Intelligent Systems 14(1): 20-26.
 6. Coad P, North D and Mayfield M (1995) Object Models: Strategies, Patterns
and Applications. Object International Inc., Yourdon Press Computing Series,
Prentice Hall, Englewood Cliffs, NJ.
 7. Coleman D, Arnold P, Bodoff S et al (1994) Object-Oriented Development:
The Fusion Method. Prentice Hall, Englewood Cliffs, NJ.
 8. Ellzey KS (1991) Data Structures for Computer Information Systems, 2nd ed.
Macmillan Publishing Company, New York.
 9. Deridder D, Wouters B (1999) The Use of Ontologies as a Backbone for
Software Engineering Tools, Programming Technology Lab, Vrije Universiteit
Brussel, Brussels, Belgium.
 10. Engles R (2001) Del 6: CORPORUM – OntoExtract ontology extraction tool,
On-To-Knowledge: Content-driven knowledge management tools through evolving
ontologies. IST project IST-1999-1032, On-To-Knowledge.
 11. Engles RHP, Bremdal BA and Jones R (2001) CORPORUM: a workbench for
the semantic web. EXML/PKDD workshop, CognIT a.s.
 12. Gil Y and Ratnakar V (2002) A comparison of (semantic) markup languages.
Proceedings of the 15th International FLAIRS Conference, Special Track on
Semantic Web, Pensacola, FL.
 13. Gruber TR (1993) A translation approach to portable ontology specifications.
Knowledge Acquisition 5: 199-220.
 14. Gruber TR (1994) Towards Principles for the Design of Ontologies Use for
Knowledge Sharing. In Proceedings of IJHCS-1994, 5 (6): 907-928.
 15. Gruninger M and Lee JT (2002) Ontology applications and design.
Communications of the ACM 45(2): 40-42.
 16. Heflin J, Volz R and Dale J (2002) Requirements for a Web Ontology
Language. W3C Working Draft.
 17. Johansson I (1998) Pattern as an ontological category, In: Guarino N (ed),
Formal Ontology in Information Systems. IOS Press, Amsterdam, Netherlands, pp 86-
94.
 18. Klein M (2002) Interpreting XML documents via an RDF schema ontology,
In: Proceedings of the 13th International Workshop on Database and Expert Systems
Applications (DEXA’02), IEEE CS Press.
 19. Klein M (2001) XML, RDF and relatives. IEEE Intelligent Systems
March/April, pp 26-28.
 20. Maedache A and Staab S (2001) Ontology learning for the semantic web.
IEEE Intelligent Systems March/April, pp 72-79.
 21. Manola F (1999) Technologies for a web object model. IEEE Internet
Computing January-February, pp 38-47.
 22. Noy NF, Sintek M, Decker S et al (2001) Creating semantic web contents
with Protégé-2000. IEEE Intelligent Systems March/April, pp 60-61.
 23. Swartout W (1999) Ontologies. IEEE Intelligent Systems January/February,
pp 18-25.
 24. Weiss MA (1993) Data Structures and Algorithm Analysis in C.
Benjamin/Cummings Publishing Company, Florida International University,
Redwood City, CA.
 25. Waralak Vongdoiwang, Batanov Dencho (2006), An ontology-based
procedure for generating object model from text description, in Knowledge and
Information Systems, Springer, London.

	Dencho N. Batanov
	Figure 12. Example of XML object model

